Matemática – Expressões Algébricas

Definição

As letras, na matemática, são usadas para representar números desconhecidos ou para generalizar propriedades  e fórmulas da Geometria.

As expressões  que apresentam  letras, além de operações e números são denominadas de EXPRESSÕES ALGÉBRICAS e as letras são chamadas de variáveis.

Veja esta definição:

TODO NÚMERO NATURAL MULTIPLICADO PELO NÚMERO 1 É IGUAL A ELE MESMO

Assim, na matemática, essa propriedade pode ser escrita e representada da seguinte maneira:

x . 1 = x

Onde X representa um número natural qualquer podendo, por tanto, a sentença assumir quaisquer valores.
Exemplo para fixação de definição

a) Uma pessoa ganha R$ 30,00 por dia de trabalho. Para se efetuar o cálculo de quanto essa pessoa ganhará durante alguns dias de trabalho, é possível escrever a seguinte expressão algébrica:

30 . x

Onde X representa o número de dias trabalhados, que pode variar: 01 dia, 02 dias, 15 dias e etc.

Resolvendo então algumas sentenças do problema acima:

– Se a pessoa trabalhar 03 dias:

30 . 3 = R$ 90,00

– Se a pessoa trabalhar 15 dias:

30 . 15 = R$ 450,00
b) Um alimento tem o custo de R$ 5,00 a unidade. Para se efetuar o cálculo de quanto custaria levar uma maior quantidade deste alimento, é possível escrever a seguinte expressão algébrica:

R$ 5,00 . x

Onde X representa a quantidade de alimentos que se deseja levar, que pode ser: 01 unidade, 100 unidades e etc.

Resolvendo então algumas sentenças do exemplo acima:

– Se for comprado 12 unidade do alimento

R$ 5,00 x 12 = R$ 60,00

– Se for comprado 05 unidades do alimento

R$ 5,00 x 5 = R$ 25,00

Desta forma, é observado que a expressão algébrica nos permite efetuar os cálculos acima, por meio de variáveis.
Observe este exemplo sobre a área de um quadrado.

A expressão algébrica da área de um quadrado de X cm de lado é determinada elevando-se a medida do seu lado ao quadrado. Acompanhe:

Área: x²

Desta forma, é possível determinar a área de qualquer quadrado, substituindo a variável X pela medida do lado do quadrado.

 

Observações importantes sobre expressões algébricas

1) Nas expressões algébricas não é comum se escrever o sinal de multiplicação, observe:

3.x » se representa 3x

a.b » se representa ab

5.y » se representa 5y

2.x » se representa 2x

 

2) É possível ter expressões algébricas com mais de uma variável ou ainda sem variável.

4xy » expressão algébrica com duas variáveis: x e y

5a²bc²»  expressão algébrica com três variáveis:  a, b e c

35 » expressão algébrica sem variável
O que é valor numérico

Em expressões algébricas quando substituímos variáveis de uma sentença por números e efetuamos as devidas operações, o resultado encontrado é o valor numérico da expressão.

O valor numérico da expressão 4x + 3, para o valor de X = 4 é:

4x + 3 =

4.4 + 3 =

16 + 3 = 19

Levando esta solução para resolver problemas com retângulos, observe a sentença colocada abaixo:

Dimensões: a = 3 cm e b = 2 cm

Desta forma, o valor numérico da sentença ab é calculado:

a = 3

b = 2

3 x  2 = 6

Logo, a área correspondente do retângulo dado é 6 cm.
Monômios

As expressões algébricas que não representam as operações de adição e subtração entre os números e as variáveis, são denominadas de monômios.

Observe os exemplos:

6x, 4x, 5y, 7y

3x²y², 4x²y²

ab, 10, 12

A parte numérica de uma expressão algébrica chamada de monômios é denominada coeficiente e a outra parte da sentença formada por letras é chamada de parte literal.
Exemplos para fixação de conteúdo

De acordo com a definição sobre monômios, vamos destacar nas sentenças abaixo a parte literal e o coeficiente:

– 6x

Coeficiente:       6

Parte Literal:      x

– 10y

Coeficiente:       10

Parte Literal:      y

– 4x²y²

Coeficiente:       4

Parte Literal:      x²y²

– 5x²y²

Coeficiente:       5

Parte Literal:      x²y²

– bc

Coeficiente:       1 (bc é igual 1bc)

Parte Literal:      bc

– 15

Coeficiente:       15

Parte Literal:      Não existe

 

Operações matemáticas com monômios

Dois ou mais monômios que possuem a mesma parte literal e também coeficientes diferentes são denominados de monômios parecidos ou monômios semelhantes.

Para se efetuar operações matemáticas de subtração e soma eles devem ser semelhantes, ou seja, possuir a mesma parte literal e também mesmo coeficientes. Caso isto não ocorra, a adição e a subtração serão apenas indicadas, porém não poderá ser efetuado nenhum cálculo.
Exemplos para fixação de conteúdo

De acordo com a definição fornecida acima, vamos ver alguns exemplos com cálculos envolvendo monômios.

a) 5xy + 12xy + 3xy

(5 + 12 + 3)xy

20xy

 

b) 4xy – 2xy + 7xy

(4 – 2 + 7)xy

9xy

 

c) 4x – 2xy + 3xy

(Operação não é possível porque os monômios não são semelhantes)

Fonte: http://www.juliobattisti.com.br/tutoriais/jorgeasantos/matematicaconcursos021.asp 

Deixe um comentário